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Abstract. The tunnelling current caused by electron transfer between two-dimensional layers is
calculated as a function of the magnetic field applied perpendicular to the layers and level splitting
of the tunnel-coupled states. The elastic scattering of the electrons is taken into consideration.
Analytical results describing both the tunnelling relaxation rate of photoexcited electrons and
the tunnelling current between the independently contacted quantum wells are obtained for two
regimes: (i) that of small magnetic fields, for which the Landau quantization is suppressed
by the scattering and the oscillating part of the current shows nearly harmonic behaviour; and
(ii) that of high magnetic fields, for which the Landau levels are well defined and the current
shows a series of sharp peaks corresponding to resonant magnetotunnelling. In the latter case,
we used two alternative approaches: the self-consistent Born approximation method and the
path-integral method, and demonstrated that the results obtained show reasonable agreement for
both of these methods. The influence of the interlayer correlation of the scattering on the first
magnetotunnelling peak is also discussed.

1. Introduction

Tunnelling of the electrons between barrier-separated two-dimensional (2D) electron layers
is currently under examination in double-quantum-well systems (DQWs). Both direct
measurements of the tunnelling current in DQWs with separate contacts [1] and time-
resolved spectroscopical measurements of the tunnelling relaxation rate [2] in photoexcited
DQWs are carried out. Application of the magnetic field perpendicular to the layers changes
the energy spectrum of the electrons and thereby modifies the tunnelling phenomena in
DQWs. The electron spectrum in this case is described by two sets of Landau levels; these
sets originate from the size-quantization subbands of the left-hand and right-hand wells (l-
and r-wells). According to the energy-conservation requirements, the probability of the
tunnelling must oscillate with the magnetic field and subband splitting energy1 (the latter
is usually controlled by a transverse bias applied to the side gates); see figure 1 for an
explanation. The properties of these oscillations are determined by scattering processes
involved in the tunnelling events. For example, the optical phonon-assisted tunnelling
leads to giant magnetophonon oscillations [3] of the tunnelling rate. The positions of the
magnetophonon peaks are determined by the condition1 − (n′ − n)h̄ωc = h̄ω0 (hereω0

is the longitudinal optical phonon frequency,ωc is the cyclotron frequency, andn, n′ are
the numbers of Landau levels participating in the transition). The first magnetophonon
peak of the tunnelling current has been observed in the separately contacted DQWs [4]
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and resonant tunnelling diodes [5, 6], as well as in the multiple-quantum-well system [7].
However, when the electron temperature, level splitting, and difference between the Fermi
levels in the wells are smaller than the optical phonon energy, the optical phonon-assisted
tunnelling is not important. Instead, an elastic scattering-assisted tunnelling takes place. In
high enough magnetic fields, for which the Landau levels are well defined, this tunnelling
has maximum probability for the resonant magnetotunnelling conditions

1 = h̄ωc(n− n′) (1)

(see figure 1), and the tunnelling efficiency depends on the Landau level broadening due
to elastic scattering in the wells. Several resonant magnetotunnelling peaks corresponding
to conditions (1) have been experimentally observed in high magnetic fields; see references
[4–6]. In weak magnetic fields, nearly harmonic oscillations of the tunnelling current in
separately contacted DQWs have been observed; see figure 3 from reference [1]. However,
as far as we know, a detailed theoretical analysis of these phenomena has not been presented.

Figure 1. A transition from the non-resonant (b) to the resonant tunnelling conditions caused
by an increase of the splitting energy1 (a) or cyclotron energy ¯hωc (c).

The aim of this paper consists in the theoretical investigation of the tunnelling between
the two-dimensional electron systems in the presence of the magnetic fieldH applied
perpendicular to the layers. In our calculations we take into account the elastic scattering
of the electrons and restrict ourselves to the one-particle picture of the phenomena under
consideration (in the concluding section we describe the conditions where the Coulomb
interaction is not essential in the determination of the tunnelling current). We consider
weak tunnel coupling, where the value of the tunnelling matrix elementT is small in
comparison with the broadening of the Landau levels. In this case, each well is described
as a separate subsystem with a quasi-equilibrium distribution of the electrons, and the
tunnelling current between the wells is calculated in the lowest order ofT 2. Two existing
schemes of experimental measurements are considered below. The first implies a contactless
DQW excited by a short laser pulse. The rateν of the tunnelling relaxation between the
wells is measured by the time-resolved photoluminescence technique (see reference [2], for
example). In the second kind of experiment, the DQWs with separate contacts to each well
are investigated [1]. This scheme allows one to measure the densityj of the tunnelling
current directly.

The paper is organized as follows. In section 2 we put general expressions forν andj
through the Green functions of the electrons in thel- andr-layers. In section 3 we develop
a quasiclassical calculation ofj and ν in the case of weak magnetic fields and derive an
analytical expression describing the oscillating behaviour of these values. The calculation of
ν andj in strong (quantizing) magnetic fields is carried out in section 4 with the use of two
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different techniques: the path-integral method and the self-consistent Born approximation
method. In section 5 we calculate the shape of the main (n = n′ = 0) magnetotunnelling
peak taking into account interlayer correlation of the scattering. Concluding remarks are
made in the last section.

2. General formalism

A method of consideration of the tunnelling between the weakly coupled low-dimensional
electron systems under elastic scattering conditions is described in our previous papers [8].
Here ‘weak coupling’ means that the tunnelling matrix elementT (which determines the
minimum splitting energy 2T of the tunnel-coupled electron subbands) is so small that
the probability of the tunnelling is much smaller than the intralayer scattering probability.
In these conditions, electron states are properly classified by the layer numbersl and r,
while the probability of electron transition between the layers due to the tunnelling is
proportional toT 2. Tunnelling relaxation of the photoexcited electrons is determined by the
balance equation for the electron concentrationnl in the l-well, which has the usual form
dnl/dt = −νnl . Hereν means the thermally averaged departure rate of thel-well electrons
due to the tunnelling to the empty states of ther-well. It can be expressed through the pair
correlator of the causal Green functionsGj

ε(x,x′) (j = l, r) in the following way:

ν = 2πT 2

h̄S

∫
dε fl(ε)

∫
dx
∫

dx′
〈
Gl
ε(x,x

′)Gr
ε(x
′,x)

〉 [∫
dε fl(ε)

〈
Gl
ε(x,x)

〉]−1

(2)

wherefj (ε) are the quasi-equilibrium distribution functions,x is the in-plane coordinate,S is
the normalization area, and〈· · ·〉 means statistical averaging over realizations of the random
potential of impurities, interface roughnesses, etc. As a rule, the photoexcited electrons are
non-degenerate and the distribution function can be taken in the formfj (ε) ∼ exp(−ε/Te),
whereTe is the effective temperature of the electrons.

The densityj of the tunnelling current (which is directly measured in the experiments
on DQWs with separate contacts) is expressed in a similar way:

j = 4πeT 2

h̄S

∫
dε [fl(ε)− fr(ε)]

∫ ∫
dx dx′

〈
Gl
ε(x,x

′)Gr
ε(x
′,x)

〉
(3)

wheree is the absolute value of the electron charge. In such experiments, the electron gas
is degenerate,fj (ε) ' θ(εFj − ε), and the integral overε should be taken in the interval
between ther-well Fermi energyεFr and l-well Fermi energyεF l .

If we assume that the scattering potentials in thel- and r-layers are uncorrelated (this
approximation is quite realistic for a short-range impurity potential or interface roughness
potential), the averaging of the pair correlators can be taken independently for each layer,
giving ∫ ∫

dx dx′
〈
Gl
ε(x,x

′)Gr
ε(x
′,x)

〉 = S ∫ dx Gl
ε(x)G

r
ε(x) (4)

whereGj
ε(x) is the averaged causal Green function of the electron inj th well. This simple

case will be considered in the following two sections, while the influence of the interlayer
correlation will be discussed in section 5. It is convenient to writeG

j
ε(x) in the Landau

level representation, introducing Green functionsGj
ε(n) in this representation:

Gj
ε(x) =

∑
n

gn(|x|)Gj
ε(n) (5)
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gn(x) = 1

2πl2H
exp

(
− x

2

4l2H

)
L0
n

(
x2

2l2H

)
. (6)

HereL0
n are the Laguerre polynomials [9] andlH =

√
h̄c/eH is the magnetic length.

Using well-known properties ofL0
n, we also obtain∫

dx Gl
ε(x)G

r
ε(x) =

1

2πl2H

∞∑
n=0

Gl
ε(n)G

r
ε(n) (7)

so the integrals over the in-plane coordinates in equations (2) and (3) reduce to the sums
over the Landau level numbers.

In spite of the approximations already made, an analytical calculation ofj andν in the
general case is impossible, because it requires an exact knowledge of the Green functions
introduced above. To develop an analytical description of the tunnelling, we consider some
approximations for the Green functions, which are commonly used in the theory of two-
dimensional electrons in the magnetic field.

3. The case of weak magnetic fields

In this section we examine the case where the cyclotron energy is small in comparison with
the Fermi energy (or effective temperature) of the electrons:

h̄ωc � εF l, Te (8)

so a large number of the Landau levels are involved in the consideration. We search for
the causal Green functions in the form

Gl
ε(n) =

1

π

0l

02
l + (ε − εn)2

(9)

Gr
ε(n) =

1

π

0r

02
r + (ε +1− εn)2

(10)

whereεn = h̄ωc(n + 1/2), and0j = 0j (ε) are the imaginary parts of thel- and r-well
self-energies, which are found self-consistently from the equations (see [10])

0l = h̄

2τl

sinh(2π0l/h̄ωc)

cosh(2π0l/h̄ωc)+ cos(2πε/h̄ωc)
(11)

0r = h̄

2τr

sinh(2π0r/h̄ωc)

cosh(2π0r/h̄ωc)+ cos[2π(ε +1)/h̄ωc] . (12)

Here τl and τr are the quantum lifetimes of the electrons in the wells (for elastic
scattering mechanisms) in the absence of the magnetic field [10]. Under the conditions
exp[−π/ωcτj ] � 1, equations (11) and (12) give the simple relations0j ' h̄/2τj . However,
as the magnetic field increases,0l and0r acquire energy-dependent oscillatory contributions.
In equations (9)–(12) we have neglected the dependence of0j on the Landau level number,
which is correct in two situations: the first is the case of short-range-correlated scattering (in
which this dependence really vanishes), and the second is realized for degenerate electron
systems, in which the difference between the Fermi energiesεF l and εFr is small in
comparison with these Fermi energies and the electrons tunnel in a narrow interval of
energy. In this latter situation we should treat the imaginary part of the self-energy as
corresponding to a Landau level near the Fermi energy, andτj as the scattering times in
the Fermi surface. We have also eliminated the real parts of the self-energies, which is
done under conditions (8) via a proper shift of the zero point of energy, and (ifτl 6= τr )
renormalization of the splitting energy1.
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After substitution of (9) and (10) in equation (7), we can calculate the sum overn,
extending the lower limit of the summation to−∞, which is a good approximation under
condition (8). In the same way as in the description of magneto-oscillatory phenomena in
solids, we use Poisson’s rule of summation [9] and obtain the current as follows:

j = e
(

2T

h̄

)2

ρ2D

∫ εFr

εF l

dε
120l0r(τl + τr)

[12+ (0l + 0r)2][12+ (0l − 0r)2]

{
1+ τl − τr

τl + τr
02
r − 02

l

12

+ 2τl0l
(τl + τr)1

sin(2πε/h̄ωc)

sinh(2π0l/h̄ωc)
− 2τr0r
(τl + τr)1

sin[2π(ε +1)/h̄ωc]
sinh(2π0r/h̄ωc)

}
(13)

whereρ2D = m/πh̄2 is the 2D density of states (m is the effective mass of the electron).
This equation describes the oscillating current, which depends on the magnetic fieldH , level
splitting1, positions of the Fermi levels in the wells, and characteristics of the scattering.
It is important to notice that this current is also sensitive to the scattering asymmetry (this
means thatτl 6= τr ), while atH = 0 this dependence vanishes.

In order to make an analytical calculation of the integral over energy in equation (13), we
consider the case where the Dingle factors exp[−π/ωcτj ] are small. Under this condition,
the oscillating part of the current appears as a small additional contribution to the background
current. We also assume symmetric scattering, takingτl = τr = τ . The current is given by

j = j0+ j0 exp

(
− π

ωcτ

)
h̄ωc

2π(εF l − εFr)
{
δ−1

(
cos

[
2π(εF l +1)

h̄ωc

]
− cos

[
2πεFl
h̄ωc

]
− cos

[
2π(εFr +1)

h̄ωc

]
+ cos

[
2πεFr
h̄ωc

])
− 2

1+ δ−2

(
sin

[
2π(εF l +1)

h̄ωc

]
− sin

[
2π(εFr +1)

h̄ωc

]
+ sin

[
2πεFl
h̄ωc

]
− sin

[
2πεFr
h̄ωc

])}
(14)

wherej0 is the current atH = 0, which can be expressed through the tunnelling rateν0 at
H = 0, andδ is the dimensionless level-splitting energy:

j0 = eρ2Dν0(εF l − εFr) ν0 = 2T 2τ

h̄2

1

1+ δ2
δ = 1τ

h̄
. (15)

Note thatν0 and j0 show a resonance at1 = 0 corresponding to the resonant tunnelling.
An expression similar to equation (14) can be derived for the tunnelling rateν in the
non-degenerate case. Neglecting higher-order contributions to ¯hωc/Te, we obtain

ν = ν0+ ν0 exp

(
− π

ωcτ

)
h̄ωc

2πTe

{
δ−1

(
1− cos

[
2π1

h̄ωc

])
+ 2

1+ δ−2
sin

[
2π1

h̄ωc

]}
. (16)

This rate shows oscillations with1 and h̄ωc. The phase of these oscillations (in a similar
way to that for equation (14)) depends on the level splitting1.

To finish this section, we evaluate the tunnelling conductanceG in the DQWs with
separate contacts. This value is defined asG = dj/dV , whereV = (εF l − εFr)/e is
the applied voltage. We consider two particular cases: (a) ohmic conductance, for which
V → 0, εF l ' εFr = εF , and (b) conductance in symmetric DQWs with equal electron
densities [1], for whicheV = 1 andεF l = εFr +1 = εF . The expressions are as follows:

G = e2ρ2Dν0

{
1+ exp

(
− π

ωcτ

)[
δ−1

(
sin

[
2πεF
h̄ωc

]
− sin

[
2π(εF +1)

h̄ωc

])
− 2

1+ δ−2

(
cos

[
2πεF
h̄ωc

]
+ cos

[
2π(εF +1)

h̄ωc

])]}
(17)
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Figure 2. The dependence of the tunnelling conductanceG (arbitrary units) on the applied
voltageV in separately contacted DQWs with matched electron densities [1] atH = 0 (dashed
line) andH = 0.2 T (solid line).

for case (a), and

G = G0+G1

G0 = e2ρ2Dν0(1− δ2)/(1+ δ2)

G1 = e2ρ2Dν0 exp

(
− π

ωcτ

)
cos

(
2πεF
h̄ωc

){
−2

δ
sin

(
2π1

h̄ωc

)
− 4

1+ δ−2
cos

(
2π1

h̄ωc

)
+ 4h̄ωc
π1

sin

(
2π1

h̄ωc

)
1− δ−2

(1+ δ−2)2

− h̄ωc

π1δ

[
1− cos

(
2π1

h̄ωc

)]
3+ δ−2

1+ δ−2

}
(18)

for case (b). In both cases, value ofG depends on the Fermi energyεF through the factor
2πεF /h̄ωc. Since exp[−π/ωcτ ] � 1, the oscillations of the electron density of states are
weak, according to the formulaρ2D{1 − 2 exp[−π/ωcτ ] cos(2πε/h̄ωc)} (for the l-well).
Therefore, the Fermi energy is connected with the electron concentration in thel-well,
nl , in the same way as in the absence of the magnetic field:εF = nl/ρ2D. Corrections
to this relation due to the magnetic field effect are fairly small and do not modify the
factor 2πεF /h̄ωc very much. Figure 2 shows the dependence of the conductance on the
applied voltage in case (b), calculated forH = 0.2 T, h̄/τ = 0.17 meV (the conditions
of the experiment described in reference [1], figure 3), and the Fermi energy is chosen
in order to give the maximum amplitude of the oscillations: cos(2πεF /h̄ωc) = −1. A
transition from the non-oscillating (H = 0, dashed line) to the oscillating (H 6= 0, solid
line) regime is clear. We note that the behaviour ofG versusV is very similar to that
observed experimentally in reference [1] (see also reference [11]). The amplitudes of the
oscillations shown in figure 3 of reference [1] are higher than those calculated here (this
disagreement is possibly because exp[−π/ωcτ ] � 1 is not a very good approximation for
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the experimental conditions). Nevertheless, the ratio of the amplitudes of the main peak
(V = 0) atH = 0 andH = 0.2 T is in good agreement with the experimental data.

4. The case of strong magnetic fields

In this section we consider the case where the Landau levels are well defined, i.e. the Landau
level broadening is small in comparison with the cyclotron energy. Since this condition
requires rather high magnetic fields (about 10 T for GaAs/AlGaAs structures), we assume
that the electrons occupy only the lowest Landau level of the left-hand well. The states
of the right-hand well are assumed to be unpopulated. We also neglect spin-dependent
effects. This is possible when the spin-splitting energy is smaller than the Landau level
widths. For non-degenerate electrons it is enough to assume that the spin-splitting energy
is small in comparison with the electron temperature (spin-flip transitions are neglected).
The description of the one-particle Green function in a high magnetic field can be based on
two different approaches. The first is the path-integral approach, which has been applied in
references [12] and [13] for determination of the density of states in high magnetic fields (for
an application of the path-integral method to oscillatory-like motion, see also review [14]).
The second is the self-consistent Born approximation (SCBA) developed in an application
to 2D systems in magnetic fields by Ando (see references in [15] and [10]). Below we
calculate the tunnelling relaxation rate and tunnelling current using these approaches and
compare the results obtained.

4.1. The path-integral approach

This method is based on an exact expression for the averaged retarded (R) or advanced (A)
Green functionsGjbε (x) (b = R,A) as

G lRε (x) = −
i

h̄

∫ ∞
0

dt exp

(
i

h̄
εt

)∫ xt=x

x0=0
D[xτ ] exp

{
i

h̄

∫ t

0
dτ L(xτ , ẋτ )

− 1

2h̄2

∫ t

0

∫ t

0
dτ dτ ′ Wl(|xτ − xτ ′ |)

}
(19)

whereD[xτ ] implies integration over all paths coming from the pointx0 = 0 toxt = x, the
random potential correlators appearing after averaging over all realizations of the random
potentialsUj(x) are defined asWj(|x|) =

〈
Uj(x)Uj (0)

〉
, and

L(x, ẋ) = m

2
ẋ2+ e

2c
H · [x× ẋ] (20)

is the Lagrangian describing free motion in the magnetic field. The expression forGrRε (x)
differs from equation (19) by a change of the well index (l → r) and an energy shift
ε → ε +1. The advanced Green functions are written in analogy with the retarded ones.
Further evaluation of equation (19) may be done only under some approximations. In the
following, we assume that the characteristic scales of the disorder potential (correlation
lengthsll and lr ) are large in comparison with the Landau orbit radius:

ll, lr � lH . (21)

In the lowest order of the disorder smoothness, the potential correlatorsWj(|x|) in the
exponent under the path integral are just replaced by the constantsWj = Wj(0), and the
causal Green functionGl

ε(n) is given by

Gl
ε(n) =

1√
2πWl

exp

[
− (ε − εn)

2

2Wl

]
(22)
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(Gr
ε(n) may be written in a similar way). However, to describe tunnelling between the

Landau levels with different numbers, we should search forGr
ε(n) in a more elaborate way.

To do this, we expand the potential part of the exponential term under the path integral for
GrRε (x) in a series for[∫ t

0
dτ
∫ t

0
dτ ′ Wr(|xτ − xτ ′ |)−Wrt

2

]/
2h̄2

up to the first order. After this transformation, the path integral can be exactly calculated
in a way similar to the one described in reference [16] for the 3D systems atH = 0.
Substituting in Gaussian correlatorsWj(x) = Wj exp(−x2/l2j ), we calculate the integrals
over coordinatex and timet (the latter is calculated under the approximation

√
Wr � h̄ωc)

and obtain∫
dx exp

(
− x

2

4l2H

)
Gr
ε(x) '

1√
2πWr

{
exp

[
− (ε +1− h̄ωc/2)

2

2Wr

]
+ Wr

(h̄ωc)2

∞∑
n=1

1

n2

(
2
l2H

l2r

)n
exp

[
− (ε +1− h̄ωc(n+ 1/2))2

2Wr

]}
. (23)

In this equation we have retained small values of order 2l2H/l
2
r in the second term of the

right-hand side. This term is responsible for the coupling between the lowest Landau level
of the l-well (it is situated atε ' h̄ωc/2) and thenth (n > 1) Landau level of ther-well,
occurring under resonant magnetotunnelling conditions (1). Coupling between the lowest
Landau levels of thel- and r-wells is described by the first term. However, this kind of
coupling is unimportant when the splitting energy1 considerably exceeds the Landau level
broadening energy, and is not studied in this section. With the use of equation (23) we can
calculate the tunnelling rate (see [8]):

ν = ν1

(
1

h̄ωc

)2 ∞∑
n=1

exp

[
− (1− h̄ωcn−Wl/Te)

2

2(Wl +Wr)

]
1

n2

(
2
l2H

l2r

)n
ν1 =

√
2πWrT

2

h̄
√
Wl +Wr12

(24)

where we have neglected the exponentially small contribution arising from the first term
in the right-hand part of (23). The remaining sum describes the series of the symmetrical
peaks caused by the resonant magnetotunnelling. The termWl/Te in the exponent describes
the temperature-induced shift of the peaks, and can be neglected when the temperature is
higher than the Landau level broadening (the case of uniform occupation).

In a similar way, calculation of the tunnelling current for low temperatures gives

j = j1

∞∑
n=1

1

2

{
1+ erf

[√
Wl +Wr

2WlWr

(
εF + (1− h̄ωcn)Wl

Wl +Wr

)]}

× 1

n2

(
2
l2H

l2r

)n
exp

[
− (1− h̄ωcn)

2

2(Wl +Wr)

]
j1 = e

πl2H
ν1

(
1

h̄ωc

)2

(25)

where erf is the error function, andεF is connected with the electron concentration of the
l-well according to equation

nl = 1

2πl2H

[
1+ erf

(
εF√
2Wl

)]
(26)
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describing the dependence of the lowestl-well Landau level occupation on the magnetic
field. When this level is fully occupied, erf· · · in equation (25) should be replaced by 1,
and we havej = enlν, whereν is given by equation (24) withTe →∞.

Figure 3. The dependence of the tunnelling rate on the magnetic field in the case of long-
range scattering potentials (obtained by the path-integral method) at two different temperatures:
Te →∞ (solid line) and

√
W/Te = 1.5 (dashed line). The splitting energy1 is fixed.

Figure 3 illustrates the dependence ofν/ν1 (see equation (24)) on the cyclotron energy
h̄ωc when1 is a constant. The calculation is done atWr = Wl = W with the use of
the following dimensionless parameters: 2¯h2/(ml2r 1) = 0.05,

√
W/1 = 0.03, Te → ∞

(solid line) and
√
W/Te = 1.5 (dashed line). Several peaks shown here correspond to the

resonances described by equation (1) withn = 0, n′ = 1, 2, 3, 4, 5. The amplitudes of
the peaks decrease rather quickly with the increasingn′, because the transitions between
the Landau levels in conditions (21) are rapidly suppressed whenn′ − n increases. The
relaxation rateν also shows peaks as a function of the splitting energy1.

In figure 4 we show dependence ofj/j1 (see equation (25)) on the level-splitting
energy1 in conditions in which the lowestl-well Landau level is half-filled (i.e.εF in
equation (25) is equal to 0). The calculation is done atWr = Wl = W with l2H/l

2
r = 0.3,

and
√
W/(h̄ωc) = 0.1. Due to non-uniform occupation of thel-well Landau level (this

is reflected by the term{1+ erf · · ·} of equation (25)) the peak positions are shifted from
1 = nh̄ωc to higher1. Similar peaks can be found in the magnetic field dependence of
the tunnelling current.

4.2. The self-consistent Born approximation

The SCBA implies solution of the Dyson diagrammatic equation, which is written in the
Landau level representation as

GjR,Aε (n) = Gj (0)ε (n)+ Gj (0)ε (n)GjR,Aε (n)
∑
n′
8
j

nn′GjR,Aε (n′) (27)
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Figure 4. The dependence of the tunnelling current on the splitting energy1 at a fixed magnetic
field corresponding to half-filling of the lowest Landau level in the left-hand well (obtained by
the path-integral method).

whereG l(0)ε (n) = (ε− εn)−1 andGr(0)ε (n) = (ε+1− εn)−1 are the Green functions of free
motion,

8
j

nn′ =
∫

dq

(2π)2
|Qnn′(q)|2Wj(q) (28)

|Qnn′(q)|2 = n!

n′!
exp[−(qlH )2/2]

[
(qlH )

2

2

]n′−n [
Ln
′−n
n

(
(qlH )

2

2

)]2

(29)

andWj(q) are the Fourier transforms of the scattering potential correlatorsWj(|x|). The
Dyson equation is obtained as a result of a partial summation of the diagrams, and it is not
exact. However, it is rather easy to solve this equation in the case of highH considered
here. If we do not take into account intermixing between the different Landau levels, we
obtainGj

ε(n) as a ‘semi-elliptical’ peak [15] centred near the position of thenth Landau
level. In order to describe the tunnelling between the Landau levels with different numbers,
we should calculateGj

ε(n) taking into account all terms in the sum overn′ in equation (27).
Such a calculation is done by iterations on the small parameters of order8

j

nn′/h̄ωc. The
result is given by (here and below8j

n ≡ 8j
nn)

Gl
ε(n) =

1

π
θ

(
2
√
8l
n − |εn − ε|

)
×
{√

1

8l
n

− (ε − εn)
2

48l2
n

+ 1

28l
n

εn − ε√
48l

n − (εn − ε)2
∑
n′

8l
nn′

εn′ − εn

}

+ 1

π

∑
n′ 6=n

8l
nn′

(εn − εn′)2
√

1

8l
n′
− (ε − εn′)

2

48l2
n′

θ

(
2
√
8l
n′ − |εn′ − ε|

)
(30)
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(Gr
ε(n) is described in an analogous way), and we see that a number of smaller semi-elliptical

peaks arise in addition to the main peak. The tunnelling rate is expressed as

ν = 2T 2

h̄3ω2
c

∞∑
n=1

8r
0n√
8r
nn

2

∫
dε exp

(
− ε
Te

)√
1− ε2

48l
0

√
1− (ε +1− nh̄ωc)

2

48r
n

×
[∫

dε exp

(
− ε
Te

)√
1− ε2

48l
0

]−1

. (31)

The limits of integration in this equation are determined by the requirement that the
expressions under the square roots must be positive. The tunnelling currentj is given
by

j = 2eT 2

π2h̄3l2Hω
2
c

∞∑
n=1

8r
0n√

8r
n8

l
0n

2

∫ εF

dε

√
1− ε2

48l
0

√
1− (ε +1− nh̄ωc)

2

48r
n

(32)

whereεF is obtained according to

nl = 1

2πl2H

 εF

π

√
8l

0

√
1− ε2

F

48l
0

+
(

1+ 2

π
sin−1 εF

2
√
8l

0

) . (33)

Figure 5. The dependence of the tunnelling rate on the magnetic field in the case of short-range
scattering potentials (obtained using the SCBA) atTe →∞. The splitting energy1 is fixed.

In the same way as equations (24) and (25), equations (31) and (32) show peaks in
the resonant magnetotunnelling conditions (1). The magnetic field dependence ofν from
equation (31) is presented in figure 5 (the five highest peaks are shown here). In the
calculation we have takenTe → ∞ and applied the approximation of a short-range scat-
tering potential symmetrically distributed across the DQWs, which givesWj(q) = w and
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8
j

nn′ = 8 = w/(2πl2H ). The tunnelling rate is expressed in units ofν2, where

ν2 = 2T 2

πh̄1

√
2wm

πh̄21
(34)

and we have chosen
√

2wm/(πh̄21) = 0.07 for the numerical calculation. In contrast to
the results of the path-integral method (see figure 3), the peaks are not Gaussian. The peak
heights decrease with the increase of ther-well Landau level number more slowly than in
figure 3, because we have used here the short-range potential approximation, in contrast to
the long-range potential approximation described by conditions (21). In order to compare
the results of the SCBA and the path-integral methods, we have calculated the peak heights
from equation (31) for conditions (21), for which8j

n = Wj and8r
0n = (2l2H/l2r )nWr . We

find the samen-dependence of the peak heights (determined by the factor(1/n2)(lH / lr )
2n),

while the absolute values of the peak heights differ from the result of the path-integral
method (see equation (24)) by the numerical factor 16/(3π3/2) ' 0.96 which is close to 1.
From this we conclude that the SCBA may be applied for calculation of the peak heights
very well. On the other hand, the SCBA is not good in the description of the edges of the
density of states, and the magnetotunnelling peaks, following the cut-offs of the density of
states, show non-physically sharp edges.

5. The influence of the interwell correlation of the scattering

In previous section we have calculated the magnetotunnelling of electrons from the lowest
Landau level of thel-well to a set of Landau levels ofr-well. Although the tunnelling
between the lowest Landau levels of thel- andr-wells has not been studied explicitly, the
above consideration shows that calculation ofν andj in this situation is reduced simply to
integration of the product of the densities of states in thel- and r-wells over the energy.
Since the approximations of the densities of states given by the path-integral formalism in
conditions (21) (Gaussian peaks) and SCBA (semi-elliptical peaks) are well known [15],
this problem appears to be simple. It becomes less trivial if the interwell correlation of
the scattering potential is taken into account. Such a calculation, which demonstrates the
influence of this correlation, is presented below.

5.1. The path-integral method

Application of the path-integral method to calculation of the pair correlators from
equations (2) and (3) implies expression of non-averaged Green functionsG

j
ε(x′,x) through

the path integrals (see [14] or [16]) and subsequent statistical averaging [16] as described
below:〈

exp

{
− i

h̄

∫ t

0
dτ Ul(xτ )− i

h̄

∫ t ′

0
dτ Ur(xτ )

}〉

= exp

{
− 1

2h̄2

∫ t

0

∫ t

0
dτ dτ ′ Wl(|xτ − xτ ′ |)

− 1

2h̄2

∫ t ′

0

∫ t ′

0
dτ dτ ′ Wr(|xτ − xτ ′ |)

− 1

h̄2

∫ t

0

∫ t ′

0
dτ dτ ′ Wlr(|xτ − xτ ′ |)

}
(35)
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where the interwell potential correlatorWlr(|x|) = 〈Ul(x)Ur(0)〉 has appeared in addition
to the intrawell correlatorsWl(|x|) andWr(|x|). In conditions (21), we putWj(|x|) = Wj
andWlr(|x|) = Wlr and obtain

1

S

∫ ∫
dx dx′

〈
Gl
ε(x,x

′)Gr
ε(x
′,x)

〉 = − 1

(8π2h̄l2H )
2

∫
dt
∫

dt ′ exp

[
i

h̄
εt + i

h̄
(ε +1)t ′

]
× exp(−Wlt

2/2h̄2−Wrt
′2/2h̄2−Wlr tt

′/h̄2)

sin(ωct/2) sin(ωct ′/2)

×
∫

dx exp

[
ix2

4l2H

(
cot

ωct

2
+ cot

ωct
′

2

)]
. (36)

Calculation of the integrals overx, t and t ′ in equation (36) and integrals overε in (2) and
(3) gives

ν =
√

2πT 2

h̄
√
Wl +Wr − 2Wlr

exp

[
− (1− (Wl −Wlr)/Te)

2

2(Wl +Wr − 2Wlr)

]
(37)

and

j =
√

2eT 2

√
π(Wl +Wr − 2Wlr)h̄l

2
H

exp

[
− 12

2(Wl +Wr − 2Wlr)

]

× 1

2

{
1+ erf

[√
Wl +Wr − 2Wlr

2(WlWr −W 2
lr )

(
εF + 1(Wl −Wlr)

Wl +Wr − 2Wlr

)]}
(38)

whereεF is connected withnl according to (26). Expression (37) describes the dependence
of the tunnelling relaxation rate on the splitting energy1 (a Gaussian peak). It also shows
that the interwell correlation of the scattering potential tends to increase the peak height and
to make the peak less broad. The tunnelling current (38) has a similar behaviour.

5.2. The self-consistent Born approximation

Below we make use of the following expression:

1

S

∫ ∫
dx dx′

〈
Gl
ε(x,x

′)Gr
ε(x
′,x)

〉 = 1

(2πlH )2
∑
n

[5RA
n +5AR

n −5AA
n −5RR

n ] (39)

where5bb′
n are the pair correlators of the retarded and advanced Green functions in the

Landau level representation. Then we search for5bb′
n in the ladder approximation, which

gives rise to the equation

5bb′
n = G lbε (n)Grb

′
ε (n)

[
1+

∑
n′
8lr
nn′5

bb′
n′

]
(40)

where8lr
nn′ is given by equation (28) whereWj(q) is replaced byWlr(q). Neglecting

intermixing between the different Landau levels in equation (40), we putn′ = n in the
sum. Further calculations are straightforward. The tunnelling relaxation rate and tunnelling
current are given by

ν = 2T 2

h̄
√
8r

0

∫
dε exp

(
− ε
Te

)
K(ε)

√
1− ε2

48l
0

√
1− (ε +1)

2

48r
0

×
[∫

dε exp

(
− ε
Te

)√
1− ε2

48l
0

]−1

(41)
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j = 2eT 2

π2h̄l2H

√
8l

08
r
0

∫ εF

dε K(ε)

√
1− ε2

48l
0

√
1− (ε +1)

2

48r
0

. (42)

Here εF , as before, is connected withnl by equation (33), and the function of interwell
correlationK(ε) is given by

K(ε) = 1− γ 2

(1− γ 2)2− γ (1+ γ 2)ε(ε +1)
/√

8l
08

r
0+ γ 2[ε2/8l

0+ (ε +1)2/8r
0]

(43)

where γ = 8lr
0

/√
8l

08
r
0. If 8lr

nn = 0, K(ε) = 1. The functionK(ε) at 1 = 0 and

8l
0 = 8r

0 has been previously calculated in reference [17] in an application to the problem
of magnetoconductivity of the multiple-quantum-well system.

Figure 6. The dependence of the tunnelling rateν (arbitrary units) on1 in the case of tunnelling
between the lowest Landau levels (obtained using the SCBA). The narrowing of the peak with
the increase of the interwell scattering potential correlation (γ = 0 (curve 1),γ = 0.2 (curve
2), andγ = 0.5 (curve 3)) is illustrated.

The influence of the interwell correlation described by equations (41) and (42) is the
same as was found in the previous subsection: the peak dependence ofν and j on 1
becomes higher and narrower. This behaviour is illustrated in figure 6, where we plot
the dependence ofν on 1 for several values of the interwell correlation parameterγ

under symmetric scattering (8l
0 = 8r

0 = 80) and high-temperature (Te → ∞) conditions.
Comparison of the SCBA value of the relaxation rate peak height for conditions (21) with
the proper value obtained by the path-integral method shows that the ratio of these values
is close to 1 up toγ = 0.5.

6. Conclusions

In this paper we have presented an analytical calculation of the elastic scattering-assisted
magnetotunnelling between the weakly coupled 2D gases, and demonstrated oscillating
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behaviour of the tunnelling relaxation rateν and tunnelling currentj as functions of the
magnetic fieldH , splitting energy1, and (in the case of lowH ) Fermi energies of the
electrons in the wells. At lowH , for which the Landau quantization is suppressed by the
scattering, the oscillating part of the current appears as a small correction to the background
current (H = 0) and can be considered by the methods usually used in the description of
the other magneto-oscillatory phenomena (for example, Shubnikov–de Haas oscillations).
In strongH , for which the Landau levels are well defined, the current and the relaxation rate
show sharp peaks appearing in resonant magnetotunnelling conditions (1). Both the low-field
oscillations and the resonant magnetotunnelling peaks of the current have been observed
experimentally (see the references cited above) and their properties are in agreement with
the results of calculations presented here.

If 1 considerably exceeds the Landau level broadening and the magnetic field is strong,
the electrons may tunnel only due to transitions between the Landau levels with different
numbers (n 6= n′). These transitions are possible due to the scattering. As a result, the peak
heights are small according to a small parameter: the ratio of the Landau level broadening
energy to the cyclotron energy. The peak heights decrease with the increase ofn− n′; the
rate of this decrease is ‘faster’ for the long-range-correlated scattering potentials. These
properties are reflected by equations (24), (25), (31) and (32). Although there have been
discussions concerning scattering-assisted tunnelling between the Landau levels (see, for
example, [6] and [5]), a detailed theoretical investigation of these processes, as far as we
know, has not been presented.

The mixing of the Landau levels with different numbers is possible without scattering,
if, apart from the perpendicular fieldH , there is also a magnetic fieldH‖ applied parallel to
the layers. If this field is not very strong, and so the cyclotron energy ¯heH‖/mc is small in
comparison with the size-quantization energies of the electrons in the wells, the eigenstates
of the system are not modified significantly (the single-well eigenstates in a strong parallel
magnetic field have been studied in reference [18]) and the general approach described
in section 2 remains valid. In the presence ofH‖, the right-hand side of equation (7) is
modified as

1

2πl2H

∞∑
n=0

∞∑
n′=0

n!

n′!
e−ββ(n

′−n)
[
Ln
′−n
n (β)

]2
Gl
ε(n)G

r
ε(n
′) (44)

whereβ = H 2
‖Z

2/(2H 2l2H ) is the dimensionless parameter associated with the in-plane
magnetic field andZ is the distance between the centres of the wave functions in the
wells. Whenβ is small, the coupling between the Landau levels with numbers 0 andn

is determined by the factorβn/n!. When, with the increase ofH‖, this factor becomes
comparable with the ratio8r

0n/(nh̄ωc)
2 (the single-well eigenstates are still not modified in

this field), the influence of the in-plane magnetic field on the tunnelling between the 0th
andnth Landau levels must be taken into account, and the magneto-oscillation peak heights
should be changed substantially.

If 1 is smaller than the Landau level broadening (such a small1 corresponds to
the resonant tunnelling conditions atH = 0), the tunnelling occurs between the Landau
levels with equal numbers (if only the lowest Landau level is occupied,n = n′ = 0). The
probability of this tunnelling is high, and the maximum tunnelling relaxation rate is inversely
proportional to the Landau level broadening energy (see, for example, equation (37)). We
have studied the influence of the interwell potential correlations on the dependence on1 of
ν and j in this situation (i.e. on the shape of the main magnetotunnelling peak) and have
found that it leads to narrowing of the peak, like it does with the resonant tunnelling peak at
H = 0 [19]. The same effect should be expected for tunnelling between the Landau levels
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with different numbers.
Let us discuss the approximations used above. The main approximation is the one-

particle approach to the problem on the assumption that the Coulomb interaction of the
electrons is not essential for determination of the tunnelling current. This statement is
not true for clean enough systems at low temperatures, where the Coulomb interaction
has a dramatic influence on the electron spectrum. The many-electron phenomena are
manifested in the fractional quantum Hall effect [20]. They are also responsible for
the arising of such ordered (correlated) states as the Wigner lattice and charge-density
wave, which are currently under investigation in low-dimensional systems. Experimental
data [4] on the low-temperature tunnelling between high-mobility 2D electron layers show
some shift of the main magnetotunnelling peak, which reflects a gap for tunnelling. This
phenomenon has been explained [21, 22] in terms of Wigner lattice formation in high
magnetic fields. The effect described lies beyond the one-particle approach developed
in this paper. However, the one-particle approach can be satisfactorily applied for the
description of the magnetotunnelling in ‘dirty’ systems, where the scattering is so strong that
it suppresses any Coulomb-induced ordering of the electrons (in other words, the scattering-
induced broadening of the Landau levels must be larger than the gaps arising due to the
ordering).

In the description of DQWs with separate contacts we have used the approximation of
a homogeneous distribution of the tunnelling current in the DQWs plane. Investigation [23]
of inhomogeneous current distributions atH = 0 provides proper estimates for the validity
of this approximation, which can be applied for the quasiclassical (low-magnetic-field) case
of section 3. However, the question about the modification of these estimates in quantizing
magnetic fields remains open.

In conclusion, our calculations demonstrate possibilities of application of the tunnelling
magneto-oscillations for characterization of the scattering potentials in the wells and
examination of the electron density of states in strong magnetic fields. The density of
states in the magnetic field has been extensively studied with the use of the above-described
approximation for the one-particle Green functions; see [12], [13] and references in [15]. In
this paper we have applied these approximations for calculation of the tunnelling relaxation
rate and tunnelling current. If the interwell correlation of the scattering potential is neglected,
this application is rather straightforward, although it requires a more careful evaluation
of the Green functions, including the corrections due to scattering-induced ‘mixing’ of
different Landau levels. We have explained how these corrections should be taken into
account both in the SCBA and in the path-integral approach, and discussed the shape of
the magnetotunnelling peaks in these approximations (section 4), describing its connection
to the shape of the density of states. The problem of the calculation of the tunnelling
magneto-oscillations is more complex in the presence of interwell correlation, for which
two-particle correlators of the Green functions should be evaluated (section 5). In this case,
the magnetotunnelling peaks appear to be narrower and their connection to the density of
states is less direct. A comparison between the experimentally determined widths of the
magnetotunnelling peaks and densities of states can provide information about the interwell
correlation of the scattering potential in DQWs.
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